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ABSTRACT

A proposed new method for hazard identification and prediction was evaluated with forecasters in the

National Oceanic and Atmospheric Administration Hazardous Weather Testbed during 2014. This method

combines hazard-following objects with forecaster-issued trends of exceedance probabilities to produce

probabilistic hazard information, as opposed to the static, deterministic polygon and attendant text product

methodology presently employed by the NationalWeather Service to issue severe thunderstorm and tornado

warnings. Three components of the test bed activities are discussed: usage of the new tools, verification of

storm-based warnings and probabilistic forecasts from a control–test experiment, and subjective feedback on

the proposed paradigm change. Forecasters were able to quickly adapt to the new tools and concepts and

ultimately produced probabilistic hazard information in a timelymanner. The probabilistic forecasts from two

severe hail events tested in a control–test experiment were more skillful than storm-based warnings and were

found to have reliability in the low-probability spectrum. False alarm area decreased while the traditional

verification metrics degraded with increasing probability thresholds. The latter finding is attributable to a

limitation in applying the current verification methodology to probabilistic forecasts. Relaxation of on-the-

fence decisions exposed a need to provide information for hazard areas below the decision-point thresholds of

current warnings. Automated guidance information was helpful in combating potential workload issues, and

forecasters raised a need for improved guidance and training to inform consistent and reliable forecasts.

1. Introduction

For the past approximately 50 years, the National

Weather Service (NWS) has issued warnings for severe

convective weather events occurring in the United

States (e.g., NOAA 2005; Coleman et al. 2011; Brotzge

and Donner 2013). These include flash flood warnings

(FFW product), severe thunderstorm warnings (SVR

product) for hail and/or wind, and tornado warnings

(TOR product) for tornadoes and any attendant hail

and/or damaging wind. From inception, forecasters is-

sued warnings on a county basis with a text product that

is still part of the current warning system. The text

product contains information about the hazard location

and movement, counties included in the warning, and

call-to-action statements. In 2007, the NWS modified its

policy and software to allow for storm-based warning

(SBW) polygons encompassing parts of one or more

counties concurrently (Ferree 2006; NOAA 2007; Sutter

and Erickson 2010). Polygon information is transmitted

in the text product as a set of latitude–longitude pairs,

along with the forecaster-determined hazard centroid

and motion vector [time/motion/location (TIME/MOT/

LOC)]. Additionally, SBWs can be updated to reduce

(but not expand) the polygon area by issuing a severe

weather statement (SVS) product.

As real-time detection technology (e.g., Crum and

Alberty 1993; Simmons and Sutter 2005; Torres and
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Curtis 2007), our conceptual understanding of severe

storms (e.g., Lee andWilhelmson 1997;Markowski et al.

1998) and severe storm environments (e.g., Thompson

et al. 2003; Markowski and Richardson 2014), and warn-

ing decision-making and training (e.g., Andra et al. 2002)

have improved, so have the performancemetrics of NWS

warnings. Nevertheless, NWS warning performance

metrics are dependent upon the collocation in time and

space of a local storm report (LSR) within the warning

polygon, where the magnitude of the LSRmust exceed a

threshold defined as severe. Severe thresholds include

any tornado, wind exceeding 50 knots (kt; where 1kt 5
0.51ms21), and hail exceeding 1 in. (0.75 in. prior to

5 January 2010). Figure 1 presents the annual trend in

the traditional verification metrics for warnings, in-

cluding probability of detection (POD), false alarm ratio

(FAR), critical success index (CSI), and lead time, for

tornado and severe thunderstorm warnings from 1986 to

2014. During this time period, POD for tornadoes in-

creased from 0.3 to near 0.8, FAR remained nearly the

same at around 0.8, CSI increased from 0.15 to near 0.25,

and lead time increased from 5 to near 15min. Similarly,

the POD for severe thunderstorms increased from 0.6 to

0.8, FAR decreased from 0.7 to 0.5, CSI increased from

0.25 to 0.45, and lead time increased from 13 to 17min.A

substantial portion of these changes in performance

metrics occurred between the mid-1980s and the early

2000s, with little change observed in the last 10–15 yr.

The switch to SBWs in 2007 appears to have had a

minimal effect on the warning performance metrics,

other than perhaps small decreases in POD and lead

time. The metrics for 2012, 2013, and 2014 appear

slightly worse compared to previous years, whichmay be

attributable to a lack of large outbreaks of significant

severe weather (which can boost the overall annual

performance).

Despite improvements in warning performance met-

rics during the past two decades, there is anecdotal ev-

idence that highlights several technological limitations

associated with the SBW system. First, warning poly-

gons are static, while the hazard areas are highly dy-

namic. The SVS product, when issued, cannot add

FIG. 1. Trends in annualmean (a) POD, (b) FAR, (c) CSI, and (d) lead time for tornado and severe thunderstorm

warnings (1986–2014). The transition from county- to storm-based warnings on 1 Oct 2007 is noted by the switch in

line colors (from green to blue and from orange to red). Statistics for 2014 are as of 9 Apr 2015. Data were obtained

from the NWS performance management website (NOAA 2015).
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additional areas to the original warning polygon, only

remove areas no longer needing a warning. Thus, fore-

casters must issue new warnings if hazardous weather

moves outside the bounds of the original warning poly-

gon before that warning expires. Second, portions of the

SBW polygon are manually and/or automatically re-

moved prior to issuance through a process known as

county clipping (i.e., intersection of the warning polygon

with geopolitical boundaries) to accommodate county-

based alerting systems and reduce overalerting.

However, the reduced polygon areas are not always

representative of the time-to-space conversion associated

with the motion vector, and the amount of automatic

county clipping is a setting that varies among weather

forecast offices (WFOs) and individual forecasters. The

resulting polygons end up being a reflection of the pre-

2007 county-based warning system. Third, warnings are

verified with a single LSR (i.e., point), yet the hazards

occur in swaths (i.e., areas). Uncertainty in receiving at

least one LSR for verification can promote the issuance of

large and/or overlapping warning polygons, and thus

leads to large false alarm areas, andmay introduce bias in

warning issuance collocated with known population

centers. However, given that this discussion is largely

anecdotal, it would be advantageous to phrase the

aforementioned points as questions to drive research and

better understand the limitations of SBWs.

Limitations in the SBW system have also been noted

in recent service assessments of the Joplin, Missouri,

tornado of 22 May 2011 and the tornado outbreak on

27 April 2011 (NOAA 2011, 2012). A common obser-

vation was that people sought additional information

beyond initial receipt of the warning, such as visual

confirmation, before taking protective action. Inaction

to warning messages was attributed to high FAR for

tornado warnings, noted in the Joplin report as 76%

nationally, and to confusion resulting from inconsistency

in the communication of hazardous weather information

among the NWS and its partners (e.g., local television

and emergency management). Additionally, it was

noted that people wanted very specific information

about the forecast paths of tornadoes and believed this

capability currently exists. With these limitations in

mind, it was recommended that the NWS continue to

explore evolving the warning system to better support

effective decision-making.

The aforementioned recommendation is supported by

the National Oceanic and Atmospheric Administration

(NOAA) 5-yr research and development plan (NOAA

2014b), which includes an objective for improved de-

cision support tools, with specific strategies that include

(i) prototyping warning methodologies that capi-

talize on future output from storm-scale models,

(ii) evaluating experimental products to extend tornado

warning lead times to 1h or greater, and (iii) deploying a

unified public warning tool into operations. Realization

of these strategies is needed to allow forecasters to take

full advantage of the guidance to be generated by pro-

jects like Warn-on-Forecast (Stensrud et al. 2009, 2013).

Additionally, these strategies are at the core of

Forecasting a Continuum of Environmental Threats

(FACETs; Rothfusz et al. 2014), a unifying vision to

evolve the current deterministic, product-centric watch

and warning paradigm toward a continuum of in-

formation via probabilistic hazard information (PHI).

To begin addressing the possibility of creating a new

watch and warning paradigm, the first of many planned

experiments was conducted in the NOAA Hazardous

Weather Testbed (HWT; e.g., Clark et al. 2012; Calhoun

et al. 2014) during 2014, with several motivating ques-

tions (discussed in the next section).

The purpose of this paper is to introduce a prototype

system for hazard identification and prediction using

PHI, and to present the information that was learned

from the 2014 HWT PHI experiment to address issues

with the SBW system. Section 2 explains the method-

ology behind the experiment design and the develop-

ment of tools that were used by forecasters in a

prototype PHI tool. Section 3 presents results from the

experiment, including objective measures of forecaster

interaction with the prototype PHI tool, verification

metrics to ascertain the performance of SBWs versus the

probabilistic forecasting methodology, and subjective

feedback from the forecasters. The paper closes with

discussion and conclusions in section 4.

2. Methodology

a. Experiment design

The objectives of the HWT PHI experiment included

the following:

d document forecasters creating, issuing, and updating

probabilistic, feature-following objects (i.e., PHI ob-

jects) for a variety of real-time and displaced real-time

severe weather events with minimal training;
d analyze warnings issued using warning generation

software (WarnGEN; operational software for issuing

SBWs) and the Advanced Weather Interactive Pro-

cessing System, version 2 (AWIPS II), versus proba-

bilistic forecasts via PHI objects using the prototype

PHI tool for two displaced real-time severe hail

events;
d understand forecasters’ thoughts on the paradigm

change from deterministic watches and warnings to

probabilistic forecasts;
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d understand how forecasters use the PHI system, and

improve the system design based on forecaster feed-

back, daily observations, and results from the dis-

placed real-time events; and
d collaborate with the HWT Experimental Forecast

Program (EFP) on short-term, regional probabilistic

forecasts for individual hazards.

The HWT PHI experiment was conducted during the

weeks of 5–9 May, 19–23 May, and 2–6 June 2014. The

weeks between operations (12–16 and 26–30 May) al-

lowed for the rapid prototyping of ideas and suggestions

from forecasters during the previous week to improve

the prototype PHI tool’s functionality (e.g., placement

of buttons, colors and drop shadows, and probability

trend drawing tools). Each week, two forecasters were

provided a workstation equipped with the Google

Chrome web browser for generating PHI objects using

the prototype PHI tool and AWIPS II for display of

traditional data products and data interrogation. All

sessions were recorded using screen-capturing software,

and video and audio recorders. The six forecasters in-

cluded fourmales and two females with work experience

ranging from a few years to 201 years and represented

NWS offices from four NWS regions (experience from

five NWS regions). There were a total of 12 operating

days, and forecasters used the prototype PHI tool in a

total of 21 NWS county warning areas (CWAs; Fig. 2).

Forecasters issued a total of 1213 probabilistic forecasts

for a variety of convective modes, including discrete

(supercells and isolated cells), mixed (linear systems

with isolated cells), and linear (bow echo) modes.

The weekly schedule comprised several activities

designed to introduce and test the prototype PHI tool

with the forecasters. Day 1 included a short presentation

with training material and a hands-on demo of the

prototype PHI tool with either a real-time or a displaced

real-time severe convective weather event. In addition, a

video was distributed to the forecasters to peruse prior

to their participation in the experiment. The intent was

to give the forecasters enough training material to feel

comfortable engaging the prototype software without

significantly influencing their conceptual approach to

issuing warnings. From this approach, the authors

gained an understanding of how forecasters approached

and made use of the concepts within the tool, based on

aspects of warning decision-making found to be impor-

tant [e.g., prior conceptual models and experience per

Heinselman et al. (2012, 2015)]. Insights gained were

combined with results from the control–test experi-

ments to inform future development and experimenta-

tion. Days 2 and 3 began with control–test experiments

using WarnGEN and the prototype PHI tool, re-

spectively (discussed in section 3b). The remainder of

days 2 and 3was spent evaluating the prototype PHI tool

in a relaxed operating period with real-time data for

collecting general feedback. On day 4, the forecasters

used the prototype PHI tool with a real-time severe

weather event in an intensive operating period while

testing a variety of geographical sectoring techniques

(i.e., split, simultaneous, and multiple CWAs). Fore-

casters began this day by joining the HWT Spring

Forecast Experiment (SFE; e.g., Clark et al. 2012) daily

briefing to acquire situational awareness while discus-

sing experimental probabilistic forecasts issued by the

SFE for environments supporting severe convection,

and immediately followed that with a personal briefing

from an SFE representative (also updated later in the

day). Day 5 was spent interviewing the forecasters to

collect feedback on their experience using the prototype

PHI tool and to hear their thoughts on enacting a par-

adigm shift proposed by FACETs (discussed in

section 3c).

b. Prototype PHI tool strategies

The prototype PHI tool (Karstens et al. 2014; Fig. 3)

is a geospatial web application designed to work toward

obtaining forecast goodness through consistency, qual-

ity, and value, as discussed in Murphy (1993). The fol-

lowing strategieswere developed to accomplish this goal:

1) incorporate tools for generating PHI for individual

hazards from severe convective events and for envi-

ronments that support severe convective events;

2) allow for rapid code development of new or refined

PHI generation methods, guidance sources, and in-

terface design; and

3) mimic the layout of the Hazard Services (Hansen

et al. 2010) software for AWIPS II.

This study discusses the results from PHI generated

explicitly for individual hazards (tornado, wind, and

FIG. 2. Map of CWAs in which forecasters operated during the

HWT PHI experiment (shaded gray). CWAs used for the two

control–test cases (FWD and SGF) are denoted by darker gray

shading.
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hail) from severe convective events. To accomplish the

aforementioned task, a methodology was developed for

probabilistically denoting the current and predicted

spatial extent of individual hazards. This method is

based on fundamental knowledge of uncertainty fore-

casting (Doswell 2004), findings from previous devel-

opment for denoting and tracking radar-based threat

areas (Lakshmanan et al. 2005; Ortega 2008), and eval-

uation in the HWT (Kuhlman et al. 2008; Stumpf et al.

2008). Furthermore, the current method is empowered

by the conceptual versatility of objects, both geo-

graphically (polygons drawn by the forecaster or pro-

vided as guidance) and programmatically (through

object serialization and self-describing attributes). In

addition to current and predicted hazard demarcation,

an object’s spatial position is time derived, allowing it to

track along with the hazards, according to an assigned

time-based motion vector, and expand, according to an

assigned time-based motion uncertainty, throughout the

lifetime of a given hazard. This concept is referred to as

Threats-in-Motion (TIM; Ortega 2008; Stumpf 2012) and

allows for dynamic hazard warning and cancellation.

A critical aspect of this methodology is constructing

tools that free forecasters of accumulating evidence to

make a warning decision, and give them the ability to

quickly convey the probability of the hazard occurrence

based on the evidence currently available. Forecasters

interactively drew a time-based probability of thresh-

old exceedance trend for each object. This trend is

intended to be a manifestation of a forecaster’s un-

certainty (diagnostic and prognostic) extending through

the predictability limit of the hazard (i.e., duration). The

probabilities from this trend are mapped to the earth’s

surface using a combination of a time-to-space conver-

sion and a two-dimensional Gaussian distribution. For

this study, theNWS severe thresholds ($1-in. hail,$50-kt

wind, and any tornado) were used to generate proba-

bilities of exceedance. After issuance, PHI can be

mapped to fine-resolution grids of any spatial and tem-

poral specified dimension (e.g., 1 km2 and 1min) and

produce location-specific information (time range of ar-

rival, departure, and duration) using a time-to-space con-

version. A conceptual mock-up of this output is provided

in Fig. 4 for the 20 May 2013 tornado event that tracked

through the cities of Newcastle, Oklahoma City, and

Moore, Oklahoma (Atkins et al. 2014; Burgess et al. 2014).

A limited set of first-guess numerical weather guid-

ance products [known as a recommender in the Hazard

Services system; Hansen et al. (2010)] was provided to

the forecasters within the prototype PHI tool. This

recommender included an implementation of an object

identification algorithm (Lakshmanan et al. 2009) to

FIG. 3. Screen capture of the web-based prototype PHI tool. The presentation of the tool has been designed to mimic the Hazard

Services layout and functionality. The configuration on the left-hand side includes various widgets for adjusting metadata associated with

a PHI object, as displayed on themap. The temporal controls for showing time-based information on themap, as well as a table with active

or pending PHI objects listed as records are given below. Functionality along the edges above and to the right controls the display of radar

information on the map.
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identify potential hail-producing storms. This algorithm

uses an advanced watershed technique to segment local

maxima in the2108C reflectivity isosurface and identify

objects on four spatial scales [20, 200, 800, and 2000 km2;

Humphrey et al. (2014)]. For simplicity, the k-means

elliptical fits to the identified radar objects were pro-

vided to the forecasters, as opposed to an irregular

radar-derived isosurface (e.g., Cintineo et al. 2014). The

maximum value of maximum estimated size of hail

(MESH) within each cluster was used to derive a rec-

ommended probability of severe hail (POSH). The

POSH value was derived by calculating the probability

of observed hail exceeding 1 in., using reports obtained

from the Severe Hazards Analysis and Verification

Experiment (SHAVE; Ortega et al. 2009), given a value

of MESH (maximum value in 5-km search radius) from

101 storms (1339 volumes). The recommender guidance

was provided to the forecaster in real time and for the

two displaced real-time cases in the control–test exper-

iment. It is important to note that the guidance proba-

bility automatically populated the PHI-object trendwith

an assumed decay to zero probability over 45min;

however, this information could be modified by the

forecaster (discussed further in section 3a).

c. Prototype PHI tool tactics

For this experiment, the creation of PHI was accom-

plished by the forecaster in twoways: manual creation or

incorporation of recommender guidance. This section

illustrates how each of these methods is performed,

beginning with the manual creation method:

1a—Forecaster engages a hazard-specific object cre-

ation tool (Fig. 5a) and draws a polygon (ellipse or

irregular shape) encompassing the radar-indicated

hazard area (Fig. 5b).

2a—Forecaster computes the swath area (area swept

out by the moving object through its duration) by

toggling to previous radar scans of the hazard and

adjusting the position of the object to match the

hazard location at these previous times (Figs. 5c–e).

The swath area is internally computed using a cas-

caded union of all time- and space-interpolated

object positions through the duration period.

3a—As step 2a is performed, a mean motion vector is

computed from the object’s location history as well

as vector error statistics. These vector error statistics

are used to compute the object’s motion uncertainty.

The forecaster can optionally override the mean

vector and vector error statistics by applying exper-

imental object motion recommenders (e.g., 75R30

rule used by operational forecasters to describe

observed motion patterns of maturing supercell

thunderstorms turning to the right by 308 and slow-

ing down to 75% of the original speed; e.g., Fig. 5f).

4a—Forecaster interactively draws a probability of

exceedance trend and assigns a duration to the

object. The probability trend begins at the current

radar scan time and ends at the current radar scan

time plus the assigned duration (Fig. 5f). The geo-

spatial grid may be previewed at this step.

5a—Forecaster optionally adds metadata to the ob-

ject. Currently, this is accomplished by typing a

brief discussion describing the meteorological sig-

nificance of the hazard area (Fig. 5f).

6a—Forecaster issues their probabilistic forecast. A back-

ground process is triggered to compute hazard infor-

mation in a variety of geospatial formats [e.g., shapefile,

Keyhole Markup Language (KML), Network Com-

mon Data Form (netCDF), Gridded Binary second

edition (GRIB2), and Geographic JavaScript Object

Notation (GeoJSON; http://geojson.org/geojson-spec.

html)] for customized display (e.g., Fig. 4).

Use of recommender guidance:

1b—Forecaster selects a recommender object (Fig. 6a).

Apop-up dialog displays the object’s attribute trends

(e.g., MESH and POSH) for analysis (Fig. 6b).

2b—Forecaster engages the recommender (Fig. 6c).

The object is displayed along with a swath de-

rived from the object’s motion vector and motion

FIG. 4. Conceptual mock-up of end-user PHI (color-filled grid

cells of tornado probability with 1-km2 grid spacing) compared to

the current SBW methodology (red polygon). The inset on the

upper right-hand side shows a conceptual probability time series

associated with this particular PHI-object forecast, as well as the

forecast time of arrival and departure (using a 35% probability

threshold) for the Moore Medical Center compared to the esti-

mated observed Newcastle–Oklahoma City (OKC)–Moore tor-

nado duration [using terminal Doppler weather radar (TDWR)

and damage width; Burgess et al. (2014)].
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FIG. 5. Illustration of how forecasters manually created a PHI object. (a) The forecaster

selects a hazard-specific drawing tool (left) and encompasses the radar-indicated hazard

areawith a polygon, (b) default attributes are assigned to the object to create a swath, (c) the

forecaster steps back previous radar scans while the object moves accordingly, (d) the

forecaster adjusts the position of the object to geospatially match the location of the hazard

area, (e) the forecaster returns to the current radar scan, and (f) the forecaster adjusts the

probability of exceedance trend and adds metadata to the object prior to issuance.
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uncertainty (provided via the k-means algorithm).

The probability trend is automatically populated

(see discussion in section 2b).

3b—Forecaster optionally overrides the automatically

generated swath and/or probability trend by perform-

ing steps 2a–4a from the manual creation method.

4b—Forecaster performs steps 5a and 6a from the

manual creation method.

After the probabilistic forecast has been issued, the

object moves and expands in time according to the time-

based motion vector and motion uncertainty assigned to

it. Thus, as new radar scans arrive, the objectmoves along

with the projected motion of the hazard area. Over time

the geospatial extent of the hazard and its intensity will

evolve and achieve inconsistency with the moving object

and the exceedance probabilities, thus requiring an up-

date. An update may be accomplished as follows:

1c—Forecaster selects a previously issued object and

chooses to update the object (Figs. 7a,b).

2c—A clone of the original polygon is interpolated

to a location consistent with the object’s motion

vector according to the current radar scan time. The

attribute trends, including speed, direction, speed

uncertainty, direction uncertainty, and probability,

are truncated to remove values no longer valid

(Fig. 7c).

3c—If the forecaster used a recommender object

previously, the object attribute trends from step 2c

are automatically updated.

4c—Forecaster optionally overrides automated updates

or prior attribute information by performing steps

2a–4a from the manual creation method (Fig. 7d).

5c—Forecaster performs steps 5a and 6a from the

manual creation method.

It is important to note that these tactics are a first-

guess implementation toward achieving the strategies

outlined in the previous section and serve as the basis for

understanding methods that worked well versus those

that need improvement through testing and iterative

development, as is discussed in section 3.

3. Results and discussion

a. Prototype PHI tool usage

Forecast duration is part of both the SBW system

and the prototype system; however, an additional

FIG. 6. Illustration of how forecasters used recom-

mender guidance to produce a PHI object. (a) The

forecaster selects a recommender (red triangles) on

the map; (b) a pop-up dialog box is generated that

allows the forecaster to analyze trends in the object’s

track variables; and (c) the forecaster initiates the

recommender, which automatically generates a swaths

and probability trend from metadata on the object.

Completion of the step in Fig. 6c is equivalent to the

completion of the step in Fig. 5e.
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FIG. 7. Illustration of how a forecaster updated a PHI object. (a) The forecaster interpolated the position of the

object created in Fig. 5 after two additional radar scans (approximately 9min later) via TIM; (b) the forecaster

selected the object, generating a pop-up dialog box with options to update, copy, or deactivate the object; (c) the

forecaster chose to update the object; (d) which allowed the object and metadata to be updated. The original time-

based motion and probability attributes are truncated (removal of the first approximately 9min) in (c).
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component in the prototype system is the ability to

forecast a probabilistic trend representing the diagnostic

and prognostic uncertainty through a duration extend-

ing through the predictability limit of the hazard. This

added component of hazard prediction raises the ques-

tion, will forecasters embrace the ability to extend the

duration of forecasts past times typical of NWS SBWs

with low probabilities?A compilation of all probabilistic

forecast trends issued by the forecasters during the ex-

periment (1213 total) is provided in Fig. 8a. First, a

distinct cutoff in several of the probability trend lines

(75% of the lines) occurs at the 45-min mark. Within the

prototype PHI tool, the default duration assigned to all

PHI objects was 45min (as is a common default in the

NWSWarnGEN application), and thus it is perhaps not

coincidental that so many of the probability trends

abruptly end at the 45-min mark. Another interesting

aspect of many of these trend lines is the relatively high

values that remain near the end of the probability trend

line. This effect raises a question about the relationship

between the shape and decay rate of these curves to

hazard prediction. The effect may imply that, based on

the evidence at hand, forecasters indeed felt confident

that the hazard would persist through the duration is-

sued, but did not extend the duration to appropriately

reflect their confidence, or that forecasters felt confident

in the duration, but were unsure how to probabilistically

forecast the hazard persisting through the duration.

These implications may be indicative of an apparent

prognostic limitation (i.e., binary aspect of warnings)

associated with the current SBW system.

To investigate this effect further, the daily distribu-

tions of the ending values from the probabilistic trends

from all forecasters, along with the total distribution,

are provided in Fig. 8b. The total distribution is skewed

toward the low-probability spectrum, with the median

value near 30%, although approximately 25% of the

distribution exceeds a probability value of 50%. From

the daily distributions, it appears that a majority of this

25% is composed of trends drawn early on in the week.

Additionally, the median values in the daily distribu-

tions decrease throughout the week. The aforemen-

tioned discussion supports the notion that, early on,

forecasters relied primarily on prior knowledge to issue

probabilistic forecasts in the prototype PHI tool, but as

the week progressed, forecasters became more familiar

with the probabilistic forecasting concepts and ad-

justed their probabilistic trends accordingly. This

finding suggests that more research is needed to iden-

tify an ideal shape and decay rate to assign to the

forecast probability trends, and the findings of such

studies should feed back to the forecaster through

training.

Another critical aspect of the forecasts that was ana-

lyzed was the amount of time it took forecasters to gen-

erate their probabilistic forecasts. The creation time is

important, as it can present a potential bottleneck in the

information flow. Does the creation of PHI increase

mental workload for the forecaster and, if so, is it worth-

while? The creation time distributions for each forecaster,

as well as the total distribution for all forecasters, from all

initial object creations (excluding updates; 545 total) are

given in Fig. 9a. For five of the six forecasters, the inter-

quartile ranges (IQRs) of the creation time distributions

are under 2min, with median values near 1min. The ex-

ception is forecaster E, who had an IQR of 2–3min and a

median value near 2.5min. Thus, it appears that the

FIG. 8. (a) All probability trends drawn by the forecasters during

the experiment and (b) daily distributions [violin plots (http://

matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.violinplot)

with box-and-whisker diagrams, diamonds are outliers beyond

the whisker lengths of Q12 (1.5 3 IQR) and Q3 1 (1.5 3 IQR);

where Q1 indicates the first quantile and Q3 indicates the third

quantile] of the ending probability value from each trend drawn

by the forecasters. Note that the day 1 median is approximately

50% in (b). Counts of the number of forecasts for each statistic

are provided.
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forecasters’ knowledge and experience in some ways

dictate the creation time; however, it is encouraging that

the creation times are seemingly quick, at least compared

to the typical volume update frequency of 4–5min from

the Weather Surveillance Radar-1988 Doppler (WSR-

88D; Crum and Alberty 1993). In addition to the bulk

creation time distributions from each forecaster, the

combined distributions by day are given in Fig. 9b. A

decrease in the spread of the distributions can be noted

from days 1 through 4, as well as a decrease in the median

creation time from near 2.5min on day 1 to near 1min on

day 4. This decreasing trend suggests that forecasters

initially had to learn how to use the tool, thus implying

high mental workload. As forecasters became more fa-

miliar with the prototype PHI tool, the mental workload

seemingly dropped. Thus, the prototype system appears

to be intuitive since it took only a few days for them to

become comfortable with issuing probabilistic forecasts.

A comparison of the creation times between PHI

objects initially generated without the use of recom-

mender guidance, versus those with recommender

guidance, for hail only (437 total) is given in Fig. 9c. It is

hypothesized that usage of recommender guidance will

substantially decrease the creation time. Although the

distribution with recommender appears to be more

skewed toward a lower creation time value than the dis-

tribution without recommender, the difference between

these distributions is, for the most part, negligible. It was

observed that forecasters would often adjust the shape of

the recommended k-means object as well as recalculate

the motion vector, thus overriding the radar-derived

values and consuming a nearly equivalent amount of

time to create the probabilistic forecast. Knowing that

forecasters used the recommender guidance less than

20% of the time (Fig. 9c) suggests that forecasters did not

trust or were not interested in the guidance information.

This implication is perhaps not surprising given the

minimal amount of training received prior to the exper-

iment, as well as not knowing the skill and reliability of

the recommender guidance (shown later).

b. Control–test experiment verification

During the experiment, two 3-h periods were used to

conduct a control–test experiment (i.e., simulated op-

erations) with two displaced real-time severe hail

events. During the first (control) period, forecasters

used AWIPS II andWarnGEN to issue SVR SBWs (for

hail only), with three forecasters working WFO Fort

Worth,Texas (FWD), from2200UTC13 June to 0020UTC

14 June 2012, and three forecasters working WFO

FIG. 9. Time duration distributions (visualized as in

Fig. 8) for creating PHI objects: (a) integrated

throughout the week per forecaster, (b) daily from all

forecasters, and (c) segregated by usage of first-guess

recommender from all forecasters. Counts of the

numbers of forecasts for each statistic are provided.
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Springfield, Missouri (SGF), from 2300 UTC 5 August

to 0120 UTC 6 August 2013 (Fig. 2). During the second

(test) period, the forecasters worked the opposite event

from the control period and used the prototype PHI

tool to issue probabilistic forecasts (for hail only) in-

stead of issuing SVR SBWs. This yielded three sets of

SBWs and three sets of probabilistic forecasts to eval-

uate for each case.

The primary intent of the control–test experiment was

to compare probabilistic forecasts and SBWs from the

same forecasters, and to document those results such

that improvements can be made for future development

and experimentation within the context of insights

gained from the real-time events. Traditional verifica-

tion metrics including POD, FAR, CSI, and lead time

were computed in addition to producing comparisons of

forecast area, false alarm area, and reliability diagrams.

However, it is important to acknowledge a few limita-

tions to these comparisons. First, the sample size is no-

tably small and is drawn from two cases of similar

convective mode (supercellular) and evolution (right-

turning and splitting cells). The durations of the SBWs

and probabilistic forecasts differ, though not enough to

have a significant impact on the results (not shown).

Also, issuance of warnings for hail only could affect the

size of the HWT SBW polygons compared to the NWS

SBW polygons (issued for hail and wind), and it is un-

clear how the inclusion (or exclusion) of wind could

affect various warning attributes. However, it is note-

worthy that no wind reports were obtained for the

13 June 2012 case (though the NWS warning text

included wind tags of 50–60mi h21 for this event), and

the hail and wind reports were approximately collocated

for the 5 August 2013 case. Thus, the results from the

control–test experiment are illustrative of and most

applicable to the particular events and hazards exam-

ined, as opposed to a generalizable context.

An overview of the time- and space-integrated fore-

casts from this control–test experiment is provided in

Figs. 10 and 11, as well as the NWS SBWs and auto-

matically generated probabilistic forecasts. The auto-

matically generated probabilistic forecasts were

produced from objects identified using the k-means

clustering algorithm by incorporating each object’s

polygon, motion vector, and MESH-derived POSH

value (described in section 2b), in combination with

empirically determined default motion uncertainty (8 kt

and 158), duration (45min), and decay rate for the

probabilistic trend (linear) to derive the probabilistic

forecast. The corresponding probabilistic forecast areas

(per threshold) and SBW areas are shown in Fig. 12.

Note that the dichotomous SBW areas are compared to

the probabilistic forecasts using lines spanning the

probabilistic spectrum (0%–100%), as it is understood

that warning decisions are often made with uncertainty

about the current and/or future occurrence of the haz-

ard. A similar procedure is carried out in Figs. 13 and 14.

For both cases, the probabilistic forecast areas de-

crease at an approximate exponential trend with in-

creasing probability thresholds. This is to be expected

given the application of a two-dimensional Gaussian

distribution to the time-integrated probabilistic forecast

FIG. 10. Comparison of traditional warnings (yellow lines) issued using (a)–(c) WarnGEN vs (e)–(g) probabilistic forecasts (filled

contours) issued using the prototype PHI tool in the HWT PHI experiment for the 13 Jun 2012 control–test case. For comparison, (d) the

NWS warnings issued during the same time period and (h) the automated probabilistic forecasts generated from the k-means objects are

provided. MESH observations are provided, denoted by filled contours in (a)–(d), and $1 in. as thick black contours in (e)–(h). Addi-

tionally, filtered subsets of points (every fifth point) used for the trackmethod of verification are provided for comparisons, denoted as red

and blue dots in the top and bottom rows, respectively.
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swaths. Note that the nonmonotonic decrease of some

probabilistic hazard areas in Fig. 12b is attributable to

some forecasters using nonelliptical objects to encom-

pass the hazard areas. An intersection between the

mean SBW area and mean probabilistic forecast area

occurs in the low-probability spectrum (10%–30%).

Additionally, the probabilistic forecast areas associated

with the automation are almost always less than the

corresponding forecaster-generated probabilistic fore-

cast areas. The forecaster-issued SBW areas compare

well with the NWS warning area for 5 August 2013,

while the forecaster-issued SBW areas are considerably

less than the NWS warning area for the 13 June 2012

case. For the latter case, Fig. 10 shows that the NWS

SBW warning areas correspond well with geopolitical

county boundaries. Geopolitical conformity (i.e., county

clipping) of SBWs issued in the HWT was ignored by

setting the minimum percentage and area thresholds to

zero in WarnGEN.

A comparison of verification metrics (POD, FAR,

CSI, and lead time) for the probabilistic forecasts (HWT

and automated) to the SBWs (HWT and NWS) is pro-

vided in Fig. 13. These statistics were produced using the

methodology outlined in the NWS directive for track

events (severe hazard traveling over time and space),

which relies on a 1-min report interpolation between the

first and last LSRs acquired from Storm Data. For each

case, two track events occurred, as denoted by the two

accumulated MESH swaths in Figs. 10 and 11.

For the probabilistic forecasts, the POD decreases

and FAR increases with increasing probability thresh-

olds (Fig. 13). The HWT probabilistic forecasts show an

increase in POD compared to the HWT SBWs in the

low-probability spectrum, but worse FAR overall, for

both cases. Compared to the NWS SBWs, the HWT

probabilistic forecasts had worse POD for the 13 June

2013 case, better POD for the 5 August 2013 case, and

better FAR for both cases. Interestingly, the POD and

FAR from the automated probabilistic forecasts were

generally worse than the HWT probabilistic forecasts.

Consequently, the mean CSI from the HWT probabi-

listic forecasts shows marginal improvement over the

mean CSI from HWT SBWs, applicable in the low-

probability spectrum (5%–20%), yet considerably more

improvement compared to the NWS SBWs for both

cases. The CSIs from the automated probabilistic fore-

casts are considerably lower than all other forecasts.

Intersections between the HWT SBWs and HWT

probabilistic forecast means occur for POD and CSI,

and this intersection occurs in the low- tomidprobability

spectrum (less than 40%–50%). No intersection oc-

curred with the mean FARs.

It is important to note that the degradation of the

verification metrics in the mid- to high-probability

spectrum is likely attributable to the decreasing spatial

extent associated with increasing probability thresholds

noted in Fig. 12, along with a limitation in using an in-

terpolation between the first and last LSRs from an

event. Probabilities in the mid- to high-probability

spectrum were typically valid for a portion of the total

forecast duration. Meanwhile, interpolated reports were

accumulated over the total forecast duration, resulting

in points inevitably landing outside of the mid- to high-

probability forecast areas. Additionally, subsets of the

track points used in the verification are shown in Figs. 10

and 11, highlighting that the interpolation of points be-

tween the first and last LSR does not always coincide

geospatially with the radar-indicated hazard areas.

Thus, the dislocation in time and space of points re-

sulting from the interpolation likely compounds the

degradation of verification metrics in the mid- to high-

probability spectrum.

FIG. 11. As in Fig. 10, but for the 5 Aug 2013 control–test case.
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The lead times for the probabilistic forecasts decrease

with increasing probability thresholds. Additionally,

lead times were longer from all of the probabilistic

forecasts, some exceeding 1 h, compared to all of the

SBWs in both cases. Interestingly, the intersection point

between the mean lead time from the HWT probabi-

listic forecasts and the HWT SBWs occurs in the high-

probability spectrum (75%–80%), thus representing a

departure from previously noted intersection points.

The substantial increase in lead time is likely attribut-

able to the flexibility in extending the duration of the

hazard-following objects combined with low values of

probability. Although increases in lead time may give

people more time to prepare and make better decisions

prior to a natural disaster, the event of 31 May 2013

suggests that providing long lead times, combined with

inconsistentmessaging and public anxiety, can result in a

negative public response (NOAA 2014a). Significant

efforts are needed to build on prior research attempting

to understand public decision-making with long lead

times and PHI for severe convective weather (e.g.,

Hoekstra et al. 2011; Ash et al. 2014).

In addition to the traditional verification metrics, an

alternative metric called false alarm area (FAA) per-

centage was computed to ascertain the amount of area

falsely denoting the location of the hazard. This metric is

used to partially address the aforementioned limitation

with directly applying the current verification method-

ology to probabilistic forecasts. The FAA percentage

was computed by intersecting MESH areas $1 in. with

(i) the probabilistic forecasts (per threshold) and (ii) the

SBW polygons and taking the inverse of the intersection

to the total area ratio. Figure 14a shows a decreasing

trend in FAA percentage with increasing probability

thresholds for most forecasters, and the FAA percent-

ages are generally less than those from SBWs. Addi-

tionally, the automatically generated forecasts

produce a distinctly lower FAApercentage compared to

all other forecasts. Note that the volatility in the false

alarm areas at probability values nearing 100% is at-

tributable to a small sample size of forecasts at these

large values. Most of the probabilistic FAA percentage

values do not depart from SBW FAA percentage values

until the mid- to high-probability spectrum.

Given the issues previously noted in section 3a with

Fig. 8a with regard to the probability trends, it is hy-

pothesized that the inclusion of high-probability values

at long forecast times impacts the results in Fig. 14a.

Thus, a systematic operation was performed to generate

alternative probabilistic forecasts using the initial value

from each forecaster’s probability trend forecast and

linearly decaying the probability trend to zero through

the specified duration. The results of this systematic

operation are given in Fig. 14b, and a notable decrease in

FAA percentage throughout the forecast probability

spectrum is apparent. Although an ideal shape of the

probability forecast trends has not been determined,

the improvements evident in Fig. 14b are supportive of

the aforementioned issues with creating trends noted in

section 3a and a need to resolve those issues through

continued research and forecaster training. Addition-

ally, the departure of the FAA percentage from

automatically generated forecasts compared to the

human-generated forecasts emphasizes a need to in-

corporate the recommender guidance information into

the forecast process.

FIG. 12. Comparison of the geospatially integrated area of the

WarnGEN-issued warnings vs the geospatially integrated area of

the probabilistic forecasts (thresholds 1%–100%) for the (a) 13 Jun

2012 and (b) 5 Aug 2013 control–test experiment cases. The hori-

zontal lines represent the values for the forecasts that do not con-

vey probabilities (WarnGEN NWS and WarnGENHWT) and are

shown as a reference to compare to the range of values for the

probabilistic forecasts.
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FIG. 13. Comparison of verification metrics (a),(b) POD; (c),(d) FAR; (e),(f) CSI; and (g),(h) lead time

computed using the NWS directive method for WarnGEN-issued SBWs and probabilistic forecasts (thresh-

olds 1%–100%) for the (left) 13 Jun 2012 and (right) 5 Aug 2013 control–test cases.
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Finally, a comparison of the reliability from the HWT

probabilistic forecasts to the automated probabilistic

forecasts is provided in Fig. 15a. To compute the re-

liability, the accumulated MESH values $1 in. were

treated as observations of severe hail for each proba-

bility forecast issued. For each forecaster, the frequency

of observed severe hail was tabulated in bins with 10%

range (i.e., number of observations compared to number

of forecast values within a given range). It is important

to note that MESH is used to compute the diagnostic

probabilities for the automated probabilistic forecasts,

which could result in some correspondence between the

analyses of the forecasts and observations. However, the

previously noted prognostic and geospatial assumptions

used to analyze and generate these forecasts have no

direct relationship to the accumulated MESH used as

observations throughout the forecast periods.

The HWT forecasts show some reliability in the low-

probability spectrum, but quickly deviate toward over-

forecasting in the mid- to high-probability spectrum,

below the no-skill line and close to the no-resolution

line. Interestingly, the trends from five of the six fore-

casters are quite consistent. The one exception, who

exhibited more reliability in the mid- to high-probability

spectrum but following the skill–no-skill line, was an

experienced forecaster quite familiar with the concept of

probabilistic forecasting for severe convective hazards.

Note that the skill–no-skill line is situated halfway be-

tween climatology and perfect reliability.

FIG. 14. (a) Mean FAA percentage computed as a function of

probability threshold for each human-generated probabilistic

forecast compared to SBWs and automated probabilistic forecasts

(k-means 20-km2 length scale) from the 13 Jun 2012 and 5Aug 2013

control–test cases. (b) As in (a), but for probabilistic forecasts that

were systematically adjusted probability trends that linearly decay

to zero.

FIG. 15. (a) Reliability diagram displaying the probabilistic

forecasts from each forecaster and the mean of all forecasters,

verified usingMESH values$1 in. from the 13 Jun 2012 and 5 Aug

2013 control–test cases. For comparison, probabilistic forecasts

using k-means clusters at the 20-km2 length scale were generated

using constant motion uncertainty values (8 kt and 158) and a linear
decay rate for the recommended probability value. (b) As in (a),

but for probabilistic forecasts that were systematically adjusted

probability trends that linearly decay to zero.
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The systematic operation performed to produce the

results in Fig. 14b was extended to Fig. 15b. Compared

to Fig. 15a, this simple adjustment improved the forecast

reliability in the mid- to high-probability spectrum by

10%–20%, although most of the forecasts in this spec-

trum still overforecast and are below the skill–no-skill

line. The one exception noted in Fig. 15a shows modest

improvement above the no-skill line. It can also be noted

in Figs. 15a and 15b that the automated probabilistic

forecasts from the 20-km2 length scale objects show

considerably more reliability, even though these fore-

casts showed degraded verification metrics. These re-

sults again emphasize a need to incorporate recommender

guidance into the forecasts unless the forecaster can be

certain of a severe event occurring that is beyond the

capability of the radar-derived guidance information.

However, it seems that, for all-around improvement

within the context of the two cases tested, a balance is

needed between the infusion of rapidly updating real-time

guidance information and the pattern recognition abilities

of well-trained forecasters. This assertion is supported by

human factors research suggesting that the incorporation

of reliable guidance in uncertainty can elevate the per-

formance of a nonexpert to that of an expert (e.g.,

Kirschenbaum et al. 2014).

c. Forecaster feedback

Subjective feedback was formally gathered through-

out the experiment to gain insight into the concepts of

the prototype system that worked well, needed im-

provement, or needed to be rethought. Forecasters

consistently thought that by issuing probabilistic fore-

casts as opposed to deterministic SBWs, they were freed

of the decision to issue or not issue their forecast. Re-

laxation of on-the-fence decisions should allow for low-

probability hazard information to be available to the

public more readily than in the SBW system. However,

inclusion of low-probability hazard information will

likely require forecasters to monitor and update more

hazard areas and/or potential hazard areas than in the

SBW system. During the experiment, forecasters felt

comfortable monitoring approximately four or five

hazard areas simultaneously, and thereafter the mental

workload significantly increased with increasing hazard

responsibility. The workload was further complicated

when storms underwent a complex evolution (e.g.,

splitting and merging cells, upscale growth to linear

convective system). To combat these workload issues,

forecasters suggested improvements in recommender

guidance in ways that would more easily allow them to

prioritize hazards and update rapidly, versus those that

can be automated and/or updated as needed. Other

workload mitigation strategies include sectorizing,

either by geographic region or by hazard type, or

grouping the hazards appropriately, any of which likely

have advantages and disadvantages.

During the experiment, several forecasters felt in-

clined to interrogate the storms and the environments

more intently with the prototype system. This feedback

suggests that forecasters will have enhanced situational

awareness and supports the notion of sectoring fore-

casters by geographic region, as opposed to hazard type.

However, not all political boundaries can be ignored

with the prototype system. Specifically, CWAs denote

the geographic area of responsibility for each of the 122

WFOs in the NWS, and current policy disallows neigh-

boring offices to issue warnings beyond their CWA

boundaries. This restriction may pose a major challenge

to operation implementation from a forecast consis-

tency standpoint when hazards reside in and/or are

projected to move into two or more CWAs simulta-

neously. However, this restriction may also present an

opportunity to develop and test various handoff pro-

cedures and collaboration tools to establish consistency,

especially if recommender guidance can be made uni-

formly available to the WFOs.

4. Conclusions

In this study, the early configuration of a new method

was introduced for hazard identification and prediction

using PHI. This method was tested in the 2014 HWT

PHI experiment. Findings from this experiment were

documented, including the prototype PHI tool usage,

control–test experiment verification, and forecaster

feedback. The collective findings documented herein

will be used to inform future improvements and training

for the prototype PHI tool and to inform future itera-

tions of development and testing in the HWT.

When forecasters used the prototype PHI tool, se-

lection of the default hazard duration of 45min occurred

approximately 75% of the time. Additionally, a signifi-

cant number of probability trends ended abruptly at a

nonzero value, though these ending probability values

decreased throughout the week. These findings highlight

potential incomplete aspects of the forecasts, perhaps

related to unfamiliarity with how to extend the duration

(probabilistic prediction) to match the forecaster’s

confidence in probabilistic prediction (duration). Fore-

casting tools should include training that encourages

forecasters to connect their forecast durations with their

probabilistic forecast trends and vice versa, as well as

include tools that engage forecasters in this thought

process. In the future, it would be advantageous to

develop recommender guidance to the forecaster on

storm longevity based on environmental characteristics,
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perhaps through convection-allowing storm-scale nu-

merical weather prediction models or though storm-

based climatological information from the Multiyear

Reanalysis of Remotely Sensed Storms (MYRORSS;

Cintineo et al. 2011; Ortega et al. 2012) project.

An encouraging aspect of the prototype PHI tool us-

age is that forecasters were able to create their proba-

bilistic forecasts quickly. Five of the six forecasters

typically took from 30 s to 2min to create their forecasts,

while the remaining forecaster typically took between 2

and 3min. As forecasters becamemore familiar with the

prototype PHI tool, the creation times decreased and

ranged from approximately 45 s to 1.5min by day 4.

These results suggest that forecasters found the tool

intuitive to use despite minimal training. Additionally,

the usage of recommender guidance did not result in a

substantial difference in creation time. As modifications

are made to the prototype PHI tool, efforts should be

made to maintain these reported values and explore

ways to improve times associated with recommender

guidance, provided that the guidance is skillful and re-

liable. It is hypothesized that providing forecasters

with a more representative first-guess object shape (e.g.,

Cintineo et al. 2014), as opposed to ellipses, will improve

the performance of incorporating of recommender

guidance with the forecaster. On the other hand, the

inconsistencies observed between individual forecasters

and the lack of baseline workload statistics highlights a

need for human factors research with NWS warning

operations to understand more about the warning

decision-making process (Boustead and Mayes 2014).

The NWS directive verification method for track

events was used to compare verification metrics from

SBWs issued in the HWT and from the NWS to prob-

abilistic forecasts issued using the prototype PHI tool in

the HWT for two severe hail events. In the low spectrum

of the probabilistic forecasts, the POD and CSI were

marginally higher for the probabilistic forecasts than the

SBWs, with amodest reduction in FAR compared to the

NWS SBWs (increase compared to the HWT SBWs)

and a significant increase in lead time. Additionally, the

low spectrum of the probabilistic forecasts was found to

be somewhat reliable. These results suggest that, for the

events tested, the PHI concepts uphold, and in some

areas improve upon, the metrics from SBWs. However,

all of the probabilistic forecast verification metrics de-

grade with increasing probabilistic thresholds. This

degradation is likely attributable to the smaller coverage

associated with large probability thresholds combined

with a dislocation in time and space of points in-

terpolated between the first and last LSRs of the event.

These limitations highlight a need for new verifica-

tion methodologies, such as the practically perfect

methodology (Davis and Carr 2000; Hitchens et al.

2013), that are more applicable to probabilistic fore-

casts. With all of the aforementioned results, it is im-

portant to bemindful of the small sample size (two cases

and six forecasters). Future experiments should include

more control–test case study experiments with a diverse

set of convective modes and evolutions from throughout

the United States to expand upon the results docu-

mented in this study.

Verification metrics from the automatically generated

probabilistic forecasts from 20-km2 k-means clusters

were worse than the metrics from the human-generated

probabilistic forecasts. However, the FAA percentage

and reliability of these forecasts were better than the

human-generated forecasts. Systematically adjusting the

human-generated probabilistic trends to linearly decay

toward zero improved both the FAA percentage and

reliability of the forecasts, but still produced more FAA

percentage and remained less reliable than the auto-

matically generated forecasts. These results highlight

that more research is needed to identify the ideal shape

and decay rate for probabilistic trends to inform future

training for the forecaster. Additionally, these results

suggest a need to integrate the human decision-making

and pattern recognition abilities with real-time guidance

information, in addition to training.

Efforts are under way to improve the presentation of

guidance information within the prototype PHI tool to

give forecasters the ability to rapidly select which haz-

ards to closely monitor and update versus those re-

quiring less attention and perhaps leave to automation.

It is planned to incorporate guidance information such

as real-time near-storm environment information and

severe potential (Cintineo et al. 2014), storm-based cli-

matological information from the MYRORSS project,

and probabilistic output from a Warn-on-Forecast sys-

tem. Additionally, verification metrics, such as those

presented or proposed herein, will be made available to

forecasters during or immediately after an event to re-

inforce aspects of training that can improve future

forecasts. With these changes implemented, we plan to

conduct more control–test experiments with events of

varying convective modes and evolutions, and begin

addressing the potential issues associated with geo-

graphic sectoring and CWA handoff procedures.
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